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Abstract: Weather surveillance radars routinely detect smoke of various origin. Of particular
significance to the meteorological community are wildfires in forests and/or prairies. For example,
one responsibility of the National Weather Service in the USA is to forecast fire outlooks as well
as to monitor wildfire evolution. Polarimetric variables have enabled relatively easy recognitions
of smoke plumes in data fields of weather radars. Presented here are the fields of these variables
from smoke plumes caused by grass fire, brush fire, and forest fire. Histograms of polarimetric data
from plumes contrast these cases. Most of the data are from the polarimetric Weather Surveillance
Radar 1988 Doppler (WSR-88D aka NEXRAD, 10 cm wavelength); hence, the wavelength does not
influence these comparisons. Nevertheless, in one case, simultaneous observations of a plume by
the operational Terminal Doppler Weather Radar (TDWR, 5 cm wavelength) and a WSR-88D is
used to infer backscattering characteristic and, hence, sizes of dominant contributors to the returns.
To interpret these measurements, Computational Electromagnetics (CEM) tools are applied. For one
wildfire from Oklahoma, radar and satellite (GOES-16, Geostationary Operational Environmental
Satellite) images are analyzed. The case demonstrates a potential to forecast fire intensification caused
by a very rapid cold front. Finally, we suggest a possible way to extract the smoke plume return from
the class of nonmeteorological scatterers.
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1. Introduction

From 1992 to present, the United States Forest Service has a record of geo-referenced wildfires
in the USA. From their statistics [1], Hoover and Hanson write that since the year 2000 “an average
of 72,400 wildfires burned an average of 7.0 million acres per year.” This is about the land size of
Maryland. The minima of burned land are about 4.0 million acres, or 6250 square miles, and is close
to the land size of Hawaii. The maxima are 10 million acres, which is about twice the land size of
Massachusetts. Besides surface damage, the wild fires caused between 12 and 19 firefighters fatalities
per year from 2015 to 2018. To reduce the burned acreage and fatalities, early detection of wild fires is
imperative. In areas void of population the principal wildfire detecting instruments are satellites and
weather radars.

According to the US National Park Service [2] about “85% of wildland fires in the United States
are caused by humans”. These include fires started as campfires and left unattended, burning of debris,
use of equipment and malfunctions, discarded cigarettes, and arson. Nevertheless, the underlining
conditions for recent increase in the occurrence of wild fires is the raising temperature of the atmosphere.
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The rise is expected to continue and research projects increased “trend towards more dangerous
near-surface fire weather conditions in Australia and pyroconvection risk factors” [3].

Weather surveillance radars routinely observe smoke plumes of various origin. Their high
sensitivity enables detecting and tracking plumes [4], and helps management of wildfires [5]. Detection
of wildfires by weather radar is on average 5 min after ignition compared to the 15 min delay achieved
with human observers [6]. Researchers used operational radars to infer injection heights of smoke
aerosols in Southern Georgia, USA, by associating these to the heights of detectable ash particle [7].
The study finds mean height of 3 ± 1 km occurs in late afternoon when the fire and convective mixing
are strongest. Nonetheless, in that study there was no clear indication of pyroconvection. Studies
of pyroconvection include observation of ash, ice, and lightning [8] in which the authors are able to
separate ash from ice particles using the polarimetric variables. Radar observations of pyroconvection
combined with lightning mapping array indicates that lightning occurred whenever the smoke plume
grew to 10 km [9] of mean sea level. These scientists capitalized on the polarimetric data (CSU CHILL,
Colorado State University and Chicago Illinois radar) to identify the smoke part of plumes by noting
low reflectivities (10–25 dBZ), increased ZDR (1–5 dB), and small correlation coefficient between returns
at orthogonal polarizations, ρhv of about 0.6.

Reference [10] contains the polarimetric characteristics of a grass fire, whereas in [11], scientists
have used mobile 3-cm wavelength radar to investigate pyroconvection and wildfire meteorology. That
was the first coordinated field project to study the “fire-atmosphere dynamics”. Its operation relied
on forecasts similar to storm chase. The reference contains detailed analysis of the fire dynamics and
evolution. The relevant information for our study is the probability density function of the differential
reflectivity and the correlation coefficient observed in the plume and rain [11], as we can compare these
to our histograms.

A comprehensive review of wildfire observations with radars is in [12]. The authors introduce the
term pyrometeor for the ash particles causing the returns and advocate “radar research to establish
the cross section and dielectric factor Km for scatterers of pyrogenic origin”. These characteristics are
extremely hard to determine from in situ observations. Nevertheless, measurements in a laboratory
setting are feasible and several studies document these [13–15]. Most consider the frequency band
8–12 GHz, but [15] considers 10 GHz and 38 GHz, whereas [16] covers the 8–12 GHz and 26.5 to 40 GHz
range. We are not aware of such studies for the 10 cm wavelengths, although laboratory measurements
of materials that might be similar to ash exist [17].

Weather radars also detect smoke from urban areas. A good example is the industrial fire in
Montreal observed with a 10 cm wavelength weather radar [18]. The authors document the history of
the plume and compare simultaneous observations with a vertically pointing 3 cm wavelength radar
and a 33 cm wavelength wind profiler. The reflectivities Z, measured with the 33 cm wavelength radar,
reach 40 dBZ while those measured at the 3 cm wavelength are about 20 dB lower. One explanation
is that the particle sizes, approximately 1 cm, caused Mie scattering at the 3 cm wavelength while at
the 33 cm wavelength the scattering was in the Rayleigh regime, characterized with a significantly
larger cross section and, consequently, stronger reflectivity Z. In addition, the authors [18] hypothesize
that refractive index irregularities also contributed to the difference. However, others [19] suggest
that coherent scattering from the particles in smoke may be significant and would explain the
correlation between the reflectivities at the two wavelengths. In [20], the authors write about dual
polarization characteristics, at 5 cm wavelength, of an apartment fire. They found mean reflectivity of
9 dBZ within the plume and maximum values of 20 dBZ. Their mean differential reflectivity, ZDR is
1.7 dB, similar to values in rain, but the low correlation coefficient (less than 0.5) clearly indicates
nonmeteorological scatterers.

In this paper, we document polarimetric radar observations of smoke caused by wildfires fueled
by different vegetation. Of particular significance to the meteorological community are forests and/or
prairies. For example, the US National Weather Service (NWS) Storm Prediction Center issues daily
fire weather outlooks. Forecasters at local offices have access to display of weather radar data in which
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they can identify and track smoke plumes. They issue fire weather watches and red flag warnings.
Related is the potential for mudslides and debris flow on steep terrain made barren by wildfires.
Predicting these events is at the core mission of the NWS and researchers suggest development of a
comprehensive system to combine radar, satellite, and models for fire weather forecasting [21].

We present polarimetric characteristics of smoke from two grass fires in Oklahoma, forest fire in
New Mexico, and brush fire near Los Angeles, California. We use data from Weather Surveillance
Radar 1988 Doppler (WSR-88D), which have a wavelength of 10 cm. To estimate dominant scatterers’
size, we compare the reflectivities from the Twin Lakes, Oklahoma WSR-88D with those observed with
the Terminal Doppler Weather Radar (TDWR), which surveys the Oklahoma City airport. That radar’s
wavelength is 5 cm.

GOES-16 (Geostationary Operational Environmental Satellite) data at 1 min intervals are available
for one Oklahoma grassfire. A strong front, observed with a WSR-88D, blew over the fire. This gave us
opportunity to compare the observations by these two operational systems.

We use the polarimetric properties of wildfires to construct a rudimentary classification method
for identifying wildfires. This we do by using an existing classifier of radar returns into meteorological
and nonmeteorological origin [22] and adding to it the wildfire class.

2. Examples of Observed Smoke Plumes

This section describes observations of smoke plumes from four wildfires.

2.1. Grassfire in Oklahoma, February 12, 2017

In 2017, Oklahoma experienced a dry spell [23], which contributed to several wildfires. One started
late in the morning on February 12, 2017, 10 to 20 km southwest from the Oklahoma City Operational
WSR-88D (Figure 1). The radar has dual polarization, wavelength λ = 10 cm, beamwidth 1◦, sample
spacing 250 m, and range resolution 235 m.

Figure 1 displays the fields of radar variables obtained from this fire. Background patterns
indicate convective rolls, which form when low-level air in the planetary boundary layer is unstable
but capped by a stable layer. The polarimetric variables are typical of insects. Notable in the plume
are positive differential reflectivities (ZDR) of about 2 dB, low correlation coefficients (ρhv) of about
0.6, large differential phases (ΦDP), smooth Doppler velocity field of about 20 m s−1, and consistent
spectrum widths (σv) of about 2 m s−1. The system differential phase on the WSR-88D, ΦDPsys is 60◦

hence the backscatter differential phase (δ = ΦDP − 60◦) spans a very large range (Figure 2) exceeding
that of birds, which can be 0◦ to 120◦ [24]. The Doppler velocity field shows northeast wind at about
10 m s−1 and confirms that the smoke particles are very good wind tracers. The spectrum widths in the
plume are on the average 1 m s−1, and in the environment, these are 2 m s−1 (Figure 2). The difference
we attribute to the geometry: the plume is aligned with the roll and the beam is almost parallel to the
roll’s axis. Therefore, the rotation components of rolls are nearly perpendicular to the beam axis and
contribute minimally to the spread of Doppler velocities within the resolution volume. The histogram
of σv from the environment is a bit wider because data from all azimuths are included, increasing its
mean value and width.
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the date is February 12, 2017 time 17:45:59 UTC. The color bars indicate dBZ units for reflectivity Z, 

dB for differential reflectivity ZDR, degrees for differential phase ΦDP, and m s−1 for Doppler velocity 

vr and spectrum width σv. The polygons contain data from the plume. 

Histogram of ZDR from the plume (Figure 2) depict values from –4 dB to over 8 dB, which is the 
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positive values prevailing. The standard deviation of ΦDP estimates is about 2.5o and the formula for 
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transmission, on orientation of the scatterer, on relative reflections at the two polarization, and on the 

backscatter differential phase δ [27]. These factors create a wide spread of δ. The histograms of the 
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separation is evident in the other two polarimetric variables, as well. Based on the histograms it is 
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classifiers. 

Figure 1. Fields of reflectivity, differential reflectivity, correlation coefficient, differential phase, Doppler
velocity, and spectrum width. The radar is the Weather Surveillance Radar 1988 Doppler (WSR-88D)
(Twin Lakes, Oklahoma City, OK, code designation KTLX), elevation angle is 0.5◦, and the date is
February 12, 2017 time 17:45:59 UTC. The color bars indicate dBZ units for reflectivity Z, dB for
differential reflectivity ZDR, degrees for differential phase ΦDP, and m s−1 for Doppler velocity vr and
spectrum width σv. The polygons contain data from the plume.

Histogram of ZDR from the plume (Figure 2) depict values from −4 dB to over 8 dB, which
is the maximum recordable on the WSR-88Ds. We see a large spread of backscatter differential
phase with positive values prevailing. The standard deviation of ΦDP estimates is about 2.5◦ and
the formula for computing it is in [25], so the values at high ΦDP are unlikely due to uncertainty of
estimates. The probable cause is couplings of the H and V components via canted smoke particles upon
backscattering [26]. The simultaneous mode (SHV) of polarimetric measurements is prone to coupling,
and the “inferred” (wrong) differential phase depends on the differential phase upon transmission,
on orientation of the scatterer, on relative reflections at the two polarization, and on the backscatter
differential phase δ [27]. These factors create a wide spread of δ. The histograms of the same variables
within and outside the plume (Figure 2) overlap. The best separation between values from smoke
and environment is in the histograms of reflectivity and correlation coefficient, but some separation
is evident in the other two polarimetric variables, as well. Based on the histograms it is possible to
construct fuzzy logic membership functions and/or priory probabilities for Bayesian classifiers.

The plume extent in height is about 1.1 km, which is the top of the boundary layer as can be best
seen in the fields of ρhv (Figure 3).
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Figure 2. Histograms of the polarimetric variables, from the smoke plume (black) and from the area
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2.1.1. Observation with the Terminal Doppler Weather Radar

The fire was also observed with the 5 cm wavelength (Figure 4), TDWR, which monitors weather
hazards over the Oklahoma City Will Rogers Airport. The radar has linear horizontal polarization,
beamwidth 0.5◦, and sample spacing and range resolution of 150 m. Obvious in these figures are larger
reflectivity estimates at the 10 cm wavelength (WSR-88D) compared to the ones at the 5 cm wavelength
(TDWR). The histograms of the reflectivities (Figure 5a) quantify this difference and the reason is in the
type of scattering, which we discuss shortly. This is in contrast to the regions outside of the polygons
from which the histograms are similar (Figure 5 b). The offset of about few dB might be due to Bragg
scattering by refractivity irregularities. The top of the boundary layer (BL) was at 1.1 km and within
it, the relative humidity was 66%. Above the BL the relative humidity decreased to 20%; mixing of
this large gradient could create significant Bragg scattering. The reflectivity Z is proportional to the
structure parameter C2

n of the refractive index fluctuations [28]:

log(C2
n) = −11.5 + 0.1Z, (1)

where Z is in dBZ. These fluctuations are very often present in the boundary layer and can produce
reflectivities up to −3 dBZ [29] at the 10 cm wavelength. At the 5 cm wavelength, the sizes of the
potentially contributing eddies is 2.5 cm, and these are more likely to be in the dissipative range of
turbulence than the 5 cm sizes that contribute coherently to the reflectivity at the 10 cm wavelength.
Note that most of the Zs in the histogram (Figure 5b) from WSR-88D are smaller than −3 dBZ and
overlap the Bragg scattering values in [29].
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Figure 4. Observed reflectivity fields: (a), with the Oklahoma City WSR-88D (λ = 10 cm, code name
KTLX), and (b), Terminal Doppler Weather Radar (TDWR) (λ = 5.35 cm, code name TOKC) located in
Norman for surveillance of the Will Rogers Airport. The color bar indicates reflectivity in dBZ. Date is
February 12, 2017 and the polygons encompass the plumes.
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Figure 5. Histograms of reflectivity (a) within the enclosed areas in Figure 4; black is from the WSR-88D
and red is from the TDWR. (b) Same as in (a) except the histograms are from the areas out of the
enclosure. The tail of the distribution from the WSR-88D extends to 30 dBZ, whereas the one from the
TDWR extends to 20 dBZ.

As an aside, there are some speckles of Z close to 30 dBZ in the data from WSR-88D (Figure 4a) and
none in the data from TDWR (Figure 4b). We speculate that the sporadic spackles are from scatterers
that are in the Mie regime at the shorter wavelength but still in the Rayleigh regime at the 10 cm
wavelength. They could be birds. Their number is very small and appears in the tail of the distribution
(Figure 5b).

We hypothesize that the difference in reflectivities (Figure 5a) off the plume is due to ash debris
that is in the Mie regime of scattering at the 5 cm wavelength but still in the Rayleigh at the 10 cm
wavelength. During burning of vegetation, the oils burn fist and the water evaporates leaving carbon
and minerals. Some carbon may burn into carbon dioxide or monoxide. Often the carbon burning is
incomplete, leaving solid residue. In such cases, the biomass (leaves, grass) retains the original shape.

2.1.2. Model of Ash Particles

To test quantitatively the hypothesis that the difference in reflectivities is due to the backscattering
regime, we developed a couple of simple backscattering models. Two modes of particles motion exist
in plumes. One is the acceding mode within the pyro updraft, in which particles experience strong
sheer and turbulence hence exhibit very chaotic motion [15]. Ash particles away from the pyro updraft
are in the descending mode and typically exhibit free fall patterns. The prevailing one is fluttering
(or swaying) in which ash particle sways back and forth like a pendulum while continuously changing
the direction of the sway [15]. Some particles spins about the vertical axis while falling, and some
tumble, evolving eventually into fluttering. We have experimentally verified these modes by dropping
pieces of dry leaves and observing their motion.

We chose three body types to model the ash particles. One is a flat pentagonal plate (inset in
Figure 6a), which models burned pieces of leaves. Similar particles have been observed on windshields
of cars. The other two are cylinders, of which, one is hollow to mimic grass, and the other is full to
represent burned branch pieces. We chose the pentagon plate with two equal orthogonal dimensions;
this accentuates the effect of size (area of plate) and reduces the effects of shape. The thickness is set to
0.15 mm, which is at the low end in [15].
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Figure 6. (a) Reflectivity of a pentagonal plate (inset) representing ashes from vegetation with the
thickness of 0.1 mm and permittivity 7 +j2. The concentration is 10−1.5 m−3, and the dimension
a = 1.02D, where D is a diameter of a circle with the same area as the plate. (b) Same as in a) but the
model is a hollow cylinder and the concentration is 10−1.72 m−3.

A wide range of dielectric constant (permittivity) may be possible for ash particles and many
come from laboratory measurements. The reference [14] lists the largest possible values for five
leaf types in Australia. The real parts range from about 4.85 to 17. Moreover, [15] shows curves of
permittivity dependence on the volume fraction up to the value of about 0.4. The real part of the
effective permittivity is between 2 to 4. Another study [17] presents measurements in the 1 to 10 GHz
band, of carbon black at the volume fraction of about 0.1. The value is about 7 + j 2, which is what we
used to generate Figure 6a.

We computed the reflectivity using the WIPL-D software [30,31]. We specified random orientation
of the plate in terms of its yaw (360◦), pitch (±30◦) and 60◦ of roll when the roll axis is in the
horizontal plane. The model of variables at the 10-cm wavelength accounts for the SHV (simultaneous
transmission and reception of the H and V components) polarimetric mode, which is standard on
all WSR-88Ds. Therefore, the reflectivity is proportional to |shh + shv |2, where the second index in
the backscattering matrix coefficient stands for the incident polarization (h) and the first indicate the
backscattered polarization. The model of reflectivity at the 5-cm wavelength computes only the copolar
reflection, which is proportional to |shh|2 because the TDWR transmits linear horizontally polarized
waves. For illustrative purpose, we compared the Ze with the values in the histogram and applied
a concentration that matches the reflectivity (10 cm wavelength at size 20 mm) of 25 dBZ. To do so
required subtraction of 15 dBZ from the curves valid at concentrations of 1 m−3. This means that the
plates’ concentration equals 10−1.5 m−3.

The span of plates’ reflectivities for which Ze(λ = 10 cm) > Ze(λ = 5 cm) is from sizes 10 to over
50 mm (Figure 6). According to the histogram (Figure 3a) the difference between these two reflectivities
is larger than 5 dB and the graph in Figure 6a shows that such difference can occur at sizes larger than
20 mm.

The difference of reflectivity factors Z(S-band)-Z(C-band) at the size of 20 mm and for the relative
dielectric constant εr between 2 and 17 changes from 4.2 to 4.5 dB, which is insignificant. Hence, cannot
be used to estimate the true εr. Nonetheless, this lack of sensitivity gives more credence to the sizes
that can be deduced from the model.

The hollow cylinder model has a diameter of 5 mm and thickness 0.15 mm. We assume the same
dynamics as for the plate. The model (Figure 6b) differs significantly from the plate. The concentration
that matches the reflectivity at the length of 20 mm with the observation (25 dBZ) is 10−1.72 m−3, which
is slightly smaller than the one for the plate. The difference Ze(λ = 10 cm) - Ze(λ = 5 cm) is at most
3 dB. This is too small to match the observation (Figure 3a). We also modeled small branches as full
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cylinders. In that model, the difference between the Zes at 10 and 5 cm wavelengths was smaller than
the one for the hollow cylinder; hence, we do not display it.

The distance from the WSR-88D to the plume’s centroid is 15 km and from the TDWR it is 10 km.
At these distances and using information in Figures 5a and 6a, we illustrate a possible number of
scatterers in the WSR-88D and TDWR resolution volumes. The beamwidths of the WSR-88D and
TDWR are 0.95◦ and 0.5◦ and the widths of the range weighting functions are 235 m and 150 m. These
specify the resolution volume sizes (i.e., volume within which the radar weighting function is equal or
larger than 1/4, i.e., −6 dB of its maximum [28]). The corresponding volume sizes are 11.42 × 106 m3 for
the WSR-88D and 0.9·106 m3 for the TDWR. Assume the scatterer (plate) largest dimension is 20 mm,
so that Ze = 25 dBZ for the WSR-88D and about 20 dBZ for the TDWR (Figure 6a). If so, there would be
about 361,000 scatterers in the resolution volume of the WSR-88D, and 28,300 scatterers in the TDWR’s
resolution volume. In actuality, the scatterers have a distribution of sizes and may not fill the resolution
volumes. Although this challenges quantitative interpretation, the basic conclusion that Mie scattering
causes the difference in Zes stands.

The prairie fires in the southwest are fueled by grasses, forbs (like wild sunflower, milkweed) and
possibly red cedar. Having no direct evidence of ash type from the prairies’ vegetation we speculate
that the “plate” like particles could be from forbs’ leaves. The ash origin is a mixture of prairie plants,
the dominant contributors to Ze are the biggest particles, and these could cause the observed difference
in the reflectivities (Figure 6a).

2.2. Prairie fire Oklahoma, April 18, 2018

We present weather radar observations of a wildfire (Figure 7) that occurred on April 18, 2018
in western Oklahoma. The vegetation consisted of grass and red cedars. Three consecutive fields of
reflectivity and matching images from the GOES-16 satellite depict the fire progression. The available
GOES images are at 1 min intervals but the radar scans are 10 min apart. In this particular case,
the rapid update of satellite data has a clear operational advantage.

Noteworthy are the following features in Figure 7. The satellite image (top) depicts well the fire
whereas the Z field does not. The cloud arc on the satellite images and similar arc in the Z fields are
indicators of the strong westerly front, which is advancing at 70 km h−1. The fire spread and intensified
rapidly just as the front blew over it (Figure 7 middle panels). Satellite images two min apart illustrate
better this evolution (Figure 8). In four minutes, the fire area (Figure 8, 3:40 to 3:44) grew by more
than two times. The smoke became discernible in the Z field at 3:52 and its area is much smaller than
the fire area and offset to the southeast (Figure 7 middle panel), undoubtedly due to the strong wind.
Ten minutes later (time 4:02 UTC) the fire image exhibits almost no change, whereas the plume has
expended by more than ten times.
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Figure 7. (Left panels) Shortwave infrared images from the GOES-16 satellite of the April 18, 2017
fire in Oklahoma (red patches depict fire locations). (Right panels) Reflectivity fields of the fire taken
within 1 min of the satellite images. The color bars indicate Z values in dBZ, and the radar scan is at
0.5◦ elevation.Atmosphere 2019, 10, x FOR PEER REVIEW 11 of 24 
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The fields of ρhv at the same times as in Figure 7 are in Figure 9. Just after the frontal passage,
the ρhv decreases (< 0.3).
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Figure 9. Fields of the correlation coefficient at the same times as in Figure 7. The elevation angle is 0.5◦.

Vertical cross section (RHI) of Z (Figure 10) exhibits clear separation of the ascending (pyro
updraft) region (Z > 33 dBZ) from the advected plume where ash slowly descends. However, in the
vertical cross section of the ρhv field the two regions are indistinguishable. This is unlike the findings
in a Florida wildfire [32] where the ρhv near the updraft is as low as 0.2 and increases downstream.
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2.3. Little Bear Wildfire in New Mexico  

On June 4, 2012, lightning ignited a fire in the Little Bear area of the Lincoln National Forest 

northwest from Ruidoso, New Mexico. By June 8, preliminary defense line was completed around 

the fire perimeter, but on June 8, strong winds blew fire embers beyond the perimeter. The fire burned 

more than 44,000 acres, 242 houses, and 12 structures. The photograph in Figure 12 (left) depicts the 

fire on June 8 and the burnout terrain is in Figure 12 (right). The steep parts of the burnout terrain are 

prone to mudslides. 

Figure 10. (Left) Vertical cross-section (RHI) of the Z field at 03:52 UTC. The line in the conical scan
(middle panel, 0.5◦ elevation) indicates the location of the RHI plot. (Right) Same as in the left panel
but the vertical cross-section of ρhv. One color bar extends over the two images of Z and indicates
categories in dBZ. The color bar over the ρhv field indicates categories, and heights are above ground
level in km.

The histograms of the polarimetric variables (Figure 11) from this plume are similar to the ones
from February 12, 2017. Although the distance to the plume is about 95 km, its reflectivity reaches
40 dBZ indicating that beam broadening effects if any are secondary. The primary contributors are
large ash particles in sufficient numbers filling a good portion of the beam. The differential reflectivity
within the plume has almost the same spread as in the February 12 case (Figure 2) and the medians are
very close (1.5 to 2.5 dB). The ρhv histogram is slightly more skewed towards 0.2 than the histogram in
Figure 2. The differential phase is centered on the system phase (~60◦) and has a large spread.
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Figure 11. Histograms of the polarimetric variables taken from 0.5◦ elevation scan at 04:02 UTC.

2.3. Little Bear Wildfire in New Mexico

On June 4, 2012, lightning ignited a fire in the Little Bear area of the Lincoln National Forest
northwest from Ruidoso, New Mexico. By June 8, preliminary defense line was completed around the
fire perimeter, but on June 8, strong winds blew fire embers beyond the perimeter. The fire burned
more than 44,000 acres, 242 houses, and 12 structures. The photograph in Figure 12 (left) depicts the
fire on June 8 and the burnout terrain is in Figure 12 (right). The steep parts of the burnout terrain are
prone to mudslides.
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Figure 12. (Left) Photograph of Little Bear fire on June 9 2012 (courtesy of Kari Greer, United States
Forest Service. (Right) Photograph of the burned area.

Figure 13, depicts fire as registered by radar and imager on a satellite. The WSR-88D is at Holloman
New Mexico and its code designation is KHDX. Noteworthy are the relatively high values (~ 30 dBZ) of
the reflectivities. The largest Zs are at the southwest part above the location of intense burning. The fire
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generated updraft lofted debris, which is highly concentrated and likely contains largest scatterers
(possibly carbonated grass, or leaves etc.). The relatively low ZDR (about 1 dB) depicts well the updraft
location and is common in plumes that are actively burning [32]. The particles on the average tend to
be horizontally oriented, are likely wobbling due to turbulence and shear in the updraft, lowering
the effective ZDR. Farther downwind (to the northeast there is a secondary maximum of Z coincident
with a very large ZDR, similar to observation by others [32]. We do not know the exact composition of
scatterers but from the low ρhv, we suspect that it consists of debris in the plume. It has settled into
predominantly horizontal orientation and exhibits significant wobbling. It is also possible that smoke
aerosols act as condensation nuclei causing crystal formation (needles and plates) and growth [33],
which further add to the reflectivity and differential reflectivity. In either case, the low values of the
correlation coefficient (0.6) suggest that there is significant flutter (random canting) of the particles.Atmosphere 2019, 10, x FOR PEER REVIEW 14 of 24 
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Figure 13. Little Bear fire on June 8 at 1800 mountain daylight timeindicated on the National Aeronautics
and Space Administration (NASA) satellite photo (upper left). Field of reflectivity Z from the WSR-88D
(Holloman Air Force Base NM, code designation KHDX) at the same time. Field of differential
reflectivity, ZDR. Field of the correlation coefficient, ρhv. The elevation angle is 3.5◦ and time is 23:56
UTC. The range rings are at 30 and 60 km.
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Refractivity variations caused by the fire could also contribute to the reflectivity [18] and influence
the other polarimetric variables. From Equation 1, it follows that the structure parameter of refractivity
variations C2

n should be 10−9 m−2/3 to create a 25 dBZ return. This is two orders of magnitude larger
than the value cited as “very intense” maxima observed in the boundary layer [34]. It is unknown
if fires can create such large values. Fires might create much smaller values comparable to natural
fluctuation, which are likely present and overwhelmed by smoke debris.

In Figure 14 are plots of the vertical profiles of the polarimetric variables. These we constructed
from the conical scans and the line in Figure 14b depicts the location of the vertical slice. The returns
extend over 6 km above sea level but the actual top is missing because it exceeds the height at the
maximum available elevation of 4.5◦. The blob of Z indicates that the particles are suspended aloft and
above the boundary layer. The differential phase values are between the systems phase (about 60◦)
and about 100◦, implying that the backscatter differential phase is between 0◦ and 40◦. This means
that some scatterers are in the Rayleigh regime while other may be oriented and inducing coupling.
The differential reflectivities exhibit values in excess of 8 dB. The correlation values are between 0.6
and 0.7, indicating preponderance of nonmeteorological scatterers. The spectrum widths away from
the source of smoke (i.e., fire) are smaller than 4 m s−1; closer to the updraft the values are 8 m s−1.
Turbulence at the transition from the updraft and the environmental flow has likely caused these
spectrum widths. At the location of largest spectrum width, there is a local 25 m s−1 maximum of
Doppler velocity away from the radar (not shown). This may be the beginning of the divergent flow at
the top of the plume. It is interacting with the environmental wind and creating turbulence.

To determine the top of the plume we took data from the WSR-88D at Albuquerque, New Mexico,
which is about 210 km away from the plume (Figure 15). The plume appears only at the 0.5◦ and
1.5◦ elevation scans and the maximum of reflectivities are 22 dBZ and 16 dBZ. Note that the Zmax in
Figure 14a is about 30 dBZ, clearly larger because at the close range of the Holloman radar smoke
particles fill its beam. The beam center of the Albuquerque radar at the 1.5◦ elevation is 10.2 km above
sea level and the lateral beam width is about 3.75 km. If the plume fills the lower part of the beam,
it follows that its height would be about 8 km. The lifted condensation level on that day was 5.3 km.
Therefore, the updraft likely created a cloud in which ice crystals coexist with smoke.
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Figure 14. (a) Vertical cross section of Z through the plume. (b) Field of Z plotted as PPI (Plan Position
Indicator) at the elevation of 3.5◦, the arrow indicates location of the vertical cross sections. (c) Same as
in (a) except the differential phase is shown. (d) Same as in (a) but the cross section is of differential
reflectivity. (e) RHI of the correlation coefficient. (f) Same as in (a) but the plot shows the spectrum
width. The top color bar indicates values of reflectivity (dBZ), the second from top color bar (above
the ΦDP field) indicates the values of differential phase (deg), the third color bar (above the ZDR field)
depicts values of ZDR (dB), the color bar above the field of ρhv indicate its categories, and the bar above
σv depicts values of the spectrum width. The ground altitude at the fire location is 2.9 km above mean
sea level. Radar time is 00:43 UTC and the range rings are at 30, 60 and 90 km.
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Figure 16. Scattergrams: (left) of ZDR, Z, and (right) ρhv, Z from the smoke plume in New Mexico. 

Figure 15. (a) Vertical cross section of reflectivity obtained with the Albuquerque WSR-88D (in New
Mexico, code designation KABX). (b) Reflectivity field at the 1.5◦ elevation scan. The line with the
arrow indicates the radial along which the vertical cross-section in (a) is plotted. The color bar indicates
the reflectivity values (dBZ) and the time is 00:52 UTC. The range marks encompass the smoke.

Scattergrams of Z, ZDR, and Z, ρhv (Figure 16) are contained within approximately rectangular
domains, suggesting that these variables are independent. Hence, for fuzzy logic type classification,
the one-dimensional membership functions (at least for these variables) would suffice.
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We alert readers that the ZDR of 8 dB is the maximum that is currently possible to record on the
WSR-88D (plans are to extend the maximum values).

Histograms of the data from the fire’s patch (manually identified), indicate the mean values and
spread (Figure 17). The mean values are about 12.5 dBZ reflectivity, 4.5 dB differential reflectivity,
and 0.5 correlation coefficient. We have plotted also the total differential phase. Its mean value of
about 60◦ represents the system differential phase; that is, the differential phase encountered in the
transmission chain and reception chain. The spread about the mean is mostly from the variation of
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the mean. The standard deviation of the estimates is approximately 2.5. The radial velocity vr of
about 6 m s−1 represents the advection component, and the spectrum width σv up to 3 m s−1 suggests
presence of some turbulence.
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biological scatterers are present. It is likely the biological scatterers (insects) are close to the ground 

and, therefore, the beam at range larger than about 40 km overshoots them. 

Figure 17. Histograms of the polarimetric variables. The red graphs stand for the New Mexico smoke
plume (KHDX WSR-88D, el = 3.5◦, and time is 00:43 UTC). The blue graphs are from the Los Angeles
brush fire obtained with the WSR-88D, code name KVTX, el = 2.5◦ (time is 21:58 UTC). Date is June
17, 2017.

2.4. Brushfire Near Castaic Lake, California

This fire started at 13:55 PDT, on June 17, 2017. The fire burned about 800 acres of brush before it
was contained a week later. The fields of polarimetric variables and Doppler velocities from smoke
plume have values similar to the ones corresponding to the background consisting of biological
scatterers (Figure 18). The principal distinction is that the smoke is isolated outside the range where
biological scatterers are present. It is likely the biological scatterers (insects) are close to the ground
and, therefore, the beam at range larger than about 40 km overshoots them.

Histograms of the polarimetric variables from the two plumes are in Figure 17. With the exception
of reflectivity, the histograms of the polarimetric variables from the two events are very similar. Most
Doppler spectrum widths are contained in the 0 to 2 m s−1 interval suggesting weak turbulence.
The mean differential phase equals the system phase indicating that most scatterers are Rayleigh.
The spread may come from the uncertainty in estimates, which is inversely proportional to ρhv.
Note that the modal ρhv is about 0.5 characterizing nonmeteorological scatterers. Values this small
increase the uncertainly of all polarimetric variables [27]. Positive ZDRs prevail as expected from
horizontally oriented small scatterers. However, there are negative values, which, we speculate,
are caused by small vertically oriented smoke debris.
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Figure 18. The fields of the polarimetric variables at the time of the brush fire near Castaic Lake,
California, on June 17, 2017. The radar is a WSR-88D in Los Angeles (code designation KVTX).
The polygon encircles the smoke plume, the elevation angle is 2.5◦, the time is 21:58 UTC, and the range
marks are at 30 and 60 km.

The histograms of reflectivity in the case of Little Bear fire is skewed toward larger Zes (peak
is at about 20 dBZ) and maximum values reach 30 dBZ. The Ze histogram from the brush fire is
skewed toward smaller Zes, with the average of about 0 dBZ. Considering that the Little Bear fire was
consuming forest and was strongest, it may have lofted larger debris causing increase in reflectivity.
Further, the Little Bear fire created significant updraft, which may have triggered condensation and ice
crystal growth that would increase the reflectivity [8]. Doppler velocities exhibit similar spread and
the mean values differ because of geometry.

3. Discussion

This section is about comparison of results and implication for identifying plumes among
nonmeteorological scatterers. In addition to the cases presented thus far, we consider the case from [26]
and two more; one is from a New Jersey forest fire and the other is from a Florida forest fire. Although
we have analyzed these in detail, for brevity we only present the final results.

3.1. Comparisons

In Table 1, we list characteristic values of some of the polarimetric variables from eight smoke
plumes. The first two in the list are the ones from Oklahoma presented in this paper. The Oklahoma
case of March 12, 2008 is analyzed in [26]. The fourth case is from Kansas. In Section 2.3 we presented
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the New Mexico forest fire and in 2.4 the California brush fire. The seventh and eight cases we have
added to broaden the geographic span of wildfires, but did not discuss so far in this paper.

Table 1. Fires with the corresponding radar variables and distances.

Date Z (dBZ,
Peak)

ZDR (dB)
Span

Location of ρhv Peak
(in The Plume)

Location of ρhv Peak
(Outside of The Plume)

12 February 2017 27 −5 to 8 0.2 0.8

18 April 2017a 39 −5 to 8 0.2 0.5

12 March 2008b 30 −5 to 8 0.3 0.85

8 January 2020c 30 −5 to 8 0.5 flat

8 June 2012d 30 −2 to 8 0.5 0.9

17 June 2012fe 20 −2 to 8 0.5 0.9

31 March 2019f 30 −5 to 8 0.5 0.9

3 March 2019g 30 −2 to 8 0.5 0.9
aOK (Oklahoma) prairie, OK prairie analyzed in [26], cKS (Kansas) prairie, dNM (New Mexico) forest, eCA
(California) brush, fNJ (New Jersey) forest, gFL (Florida) forest.

Note that the maximum Z can be as high as 39 dBZ. The Z histogram from the prairie fire (Figure 5)
is compatible with the one from the forest fire in New Mexico (Figure 15). Both have a peak close to
20 dBZ and the maximum values of about 28 dBZ (Figures 5 and 15).

The differential reflectivities range mostly from −5 dB to over 8 dB (the truncation of recorded
data). Nonetheless, in three cases the lowest value is −2 dB. The shape and spread of ZDR histograms
in all cases of Table 1 (not shown) are very similar. The spread is considerably larger than the spread
reported in [11], and so are the maximum values. The spread is also larger than found in smoke from
an apartment fire [20]. The histograms overlap those caused by birds and insects.

The peaks positions of ρhv from the plumes are between 0.2 and 0.5 but outside of the plumes
they are between 0.5 (one case) and 0.8 to 0.9 in all but one case. Note that the peak’s position of
the probability density reported in [11] is very close to the positions in the two Oklahoma wildfires.
However, the radar wavelength in [11] is about 3 cm; hence, many scatterers may be in the Mie
regime. Consequently, their backscatter differential phases may have decreased the ρhv. Clearly further
investigation is in order.

The ρhv obtained from insects in Kansas (not shown herein) has a flat histogram, which totally
overlaps the one from the plume. If the separation of the histograms peaks of insects from the ones
of wildfires is sufficiently large (like in the first three cases, Table 1) separating the plume from the
background returns is easier. Histograms of ρhv from most wildfires are very close to the histogram
from the apartment fire [20]. Note that the estimates of ρhv may be biased (see the Appendix A).

We found that the mean of the backscatter differential phase for all cases is small (few degrees).
The spread of the backscatter differential phase from all but the Oklahpoma February 12, 2012 case is
about 50◦ (1 sigma width of histogram). In the OK February 12, 2012 case, the spread is about 70◦.
These values overlap those from the environment and this makes automatic separation challenging.

Although the average values are comparable, the spreads and shapes of the histograms do not
match across the board. The polarimetric variables from the two prairie fires in Oklahoma are very
similar and unique in the values of the correlation coefficient and backscatter differential phase. The ρhv

histograms are skewed toward zero and the histograms of ΦDP are considerably wider than the
corresponding histograms in the other cases. We remind readers that the backscatter differential phase
matters and is equal to the difference ΦDP − <ΦDP>, where the brackets signify the average value,
which, in the case of sparse scatterers (as here), is equal to the system differential phase. The dominant
low values of ρhv and the wide spread of backscatter differential phase we attribute to continuous
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quick reorientation (i.e., thumbing, fluttering, spinning) of the smoke debris. This is also the reason
that the correlation coefficient from smoke is generally smaller than the one from insects.

The smoke plume produced by the forest fire had a strong updraft, which lofted scatterers to
about 8 km mean see level well above the liquid condensation level. Therefore, we expect that the
updraft crated some cloud particles that mixed with the smoke scatterers. The prairie and the brush
fires brought the smoke to the top of the planetary boundary layer, but no further.

3.2. Classification

We modified the simple fuzzy logic classifier [22] that separates the meteorological from the
nonmeteorological returns as follows. Within the nonmeteorological category, we identify smoke
plumes based on the case studies herein by assigning wildfire class to ρhv between 0.2 and 0.7, and the
texture (local standard deviation) of ΦDP to be larger than 90◦. Prior to using these thresholds, we apply
a two dimensional median filter with size 17 range location by 17 radials. The Z, ZDR, values from
insects/birds totally overlap those of plumes. However, the local textures may have some value, which
we are further researching. In Figure 19d are classified returns. Most are from biological scatterers (gray
areas) and the plume (red area) is recognized fairly well. Nevertheless, there is likely a misclassification
in the northeast sector.
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Figure 19. Fields of Z, ρhv, ΦDP, and (d) the results of a rudimentary classification (red color). Data is
from the April 18, 2019 wildfire case in Oklahoma (time 04:02 UTC). Classes are clutter from anomalous
propagation (AP), biological scatterers (BI), meteorological returns (MS), and smoke plumes (SMK).
(a) reflectivity, (b) correlation coefficient, (c) differential phase, and (d) results of classification.

4. Conclusions

We have documented polarimetric radar observations of smoke plumes caused by wildfires of
different origin. Two observations are from grass fires in Oklahoma, one is a shrub fire in California,
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and one is a forest fire in New Mexico. We contrast the histograms of the polarimetric variables
from these plumes to the histograms from the scatterers in the planetary boundary layer background.
Moreover, we have tabulated characteristic values of Z, ZDR, and ρhv from the analyzed four cases and
an additional four events to add to the database. The peaks of the ρhv histograms from three Oklahoma
grass fires are at the ρhv ≤ 0.3. However, the histogram peak from a wild grass fire in Kansas is at
ρhv= 0.5, which is also the location of the peaks from all other wildfires we examined. We have no
satisfactory explanation for this occurrence and call for further study on a larger sample.

In the case of the forest fire, a pattern of the polarimetric variables within the plume was evident.
Just in and above the pyro updraft, the ZDR is smaller than 1 dB and Z has a maximum. In the
descending region of the plume, the ZDR is positive and Z is smaller. Others have reported similar
observations. Most of our data is from the descending region in the plume.

We have compared reflectivities measured with a 10 cm wavelength WSR-88D to the ones
measured with a 5 cm TDWR to infer the dominant sizes of scatterers. We use Computational
Electromagnetics (CEM) tools to model scatterers in the plume and deduce sizes and orientation of the
dominant ones. Our model of a fluttering ash piece as a pentagonal plate can explain the difference
between the reflectivities at 10 and 5 cm wavelengths. A similar model of a straw with a hollow
cylinder underestimates the magnitude of the difference. Our plate model is not sensitive to the
expected thickens (0.15 to 0.25 mm). It is also insensitive to the range of permittivities expected in ash
because the effect on the dielectric factor Km is modest. Therefore, the ensuing polarimetric variables
are also relatively insensitive to permittivity. As we have no direct observation of the ash particles, we
speculate that the plate like scatterers may be from forbs’ leaves.

As an aside, we also compare background reflectivities in the planetary boundary layer of
Oklahoma and conclude that the principal contributors are insects and birds. While the insects are
Rayleigh scatterers at both wavelengths, the birds scatter in the Mie regime at the 5 cm wavelength.

From these observations, we constructed fuzzy logic type identifier of fire plumes within classified
nonmeteorological returns. We use the correlation coefficient ρhv and the texture of the differential
phase. This identifier is rudimentary and requires further development with possible inclusion of
additional variables.

For one Oklahoma grassfire, GOES-16 satellite data at 1 min intervals is available. A strong front
observed with a WSR-88D radar blew over the fire and according to the satellite images, increased its
intensity. The radar volume scans were at 10 min intervals. Because radar detection of fronts is routine,
we submit that by forward extrapolating the front’s position in time it may be possible to predict
fire intensification. This would have significant operational implication for monitoring evolution
of wildfires.

Unlike satellite, radar can observe smoke irrespective of the environmental conditions like day,
night, or cloud cover. Therefore, it can serve authorities and the public for several purposes. Radar
observations of smoke may provide advance information about the potential degradation of air
quality. Knowing location and progression of fire can be useful to airport authorities, especially for
small municipal airports. Predicting contamination of water resources by falling smoke debris, and
identifying barren regions prone to mudslides is another useful information present in the data from
polarimetric weather radars.

Our analysis is not comprehensive because we have examined only few aspects of wildfires.
Moreover, the sample size is small. Future studies should include a comprehensive statistical analysis,
detailed modeling with verifications, and further development of classification algorithm.
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Appendix A

We discuss the following three effects on the correlation ρhv: dwell time Td, polarimetric mode
of operation, and the refractive index of scatterers. The dwell time is the total time during which M
samples spaced by the pulse repetition time Ts are collected, so Td = MTs. The variance reduction and
the bias of say ρhv depends on the equivalent number of independent samples MI as MI = 4MTsπ

1/2σv/λ.
The biased ρhv for large signal to noise ratio is Equation (A16) of [35],

ρhv(m) = ρhv +

(
1− ρ2

hv

)2
4MIρhv

(A1)

where ρhv(m) is the estimate from radar data. Clearly, the sample dependent bias is always positive.
Our data with mean ρhv of 0.4 to 0.5 have been obtained with the longest dwell times of about 220
ms, which is about 10% larger than the dwell time used in the Oklahoma cases (196 ms). Moreover,
evaluation of (A1) with these dwell times and spectrum widths of 1 to 2 m s−1 indicates that the bias is
less than 0.07, which is considerably smaller than the separation of the histogram peaks of about 0.3.
See also Figure 2 of [26], where at dwell times larger than 126 ms (number of samples 128) the bias in
ρhv is insignificant.

In the simultaneous (SHV) mode, the polarimetric radar transmits the H and V components
simultaneously; hence, the transmitted polarization depends on the phase shift between the two
components, ψt. That phase shift is unknown and depends on the individual radar mainly because
each radar operates at a different frequency and therefore even if the hardware is identical the ψts will
differ. In Figure 6 of [26], a 90◦ change of ψt causes a drop in the ρhv from about 0.5 to 0.2 in case of
needle like scatterers. Although the effect may be present in some of our data, we doubt that it is strong.
This is because the effect would affect equally the ρhv from both the plume and the environment, which
we do not see.

Whereas the previous two effects are related to the instrument, the influence of permittivity ε is a
physical factor. Suffice to say that increases in the real part of permittivity enhance the polarimetric
variables. For example, the increase from 15 to 30 causes a drop of ρhv by about 0.1 [26].
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